Let
$R = \sqrt{a^2 + b^2}$
Choose $\theta$ such that
$\cos \theta = \frac{b}{R}, \quad \sin \theta = \frac{a}{R}$
Then
$a\sin A + b\cos A = R(\sin A \sin \theta + \cos A \cos \theta) = R\cos(A - \theta)$
Given that
$a\sin A + b\cos A = c,$
we get
$R\cos(A - \theta) = c \quad \Rightarrow \quad \cos(A - \theta) = \frac{c}{\sqrt{a^2 + b^2}}$
Hence,
$A - \theta = \pm \cos^{-1}\!\left(\frac{c}{\sqrt{a^2 + b^2}}\right) + 2\pi n, \quad n \in \mathbb{Z}$
and since $\tan \theta = \dfrac{a}{b}$, we have $\theta = \tan^{-1}\!\left(\dfrac{a}{b}\right)$
Therefore,
$\boxed{A = \tan^{-1}\!\left(\frac{a}{b}\right) \pm \cos^{-1}\!\left(\frac{c}{\sqrt{a^2 + b^2}}\right)}$
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.